3.201 \(\int \cot (c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=47 \[ -\frac {a^2 \csc ^2(c+d x)}{2 d}-\frac {2 a^2 \csc (c+d x)}{d}+\frac {a^2 \log (\sin (c+d x))}{d} \]

[Out]

-2*a^2*csc(d*x+c)/d-1/2*a^2*csc(d*x+c)^2/d+a^2*ln(sin(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2833, 12, 43} \[ -\frac {a^2 \csc ^2(c+d x)}{2 d}-\frac {2 a^2 \csc (c+d x)}{d}+\frac {a^2 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Csc[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

(-2*a^2*Csc[c + d*x])/d - (a^2*Csc[c + d*x]^2)/(2*d) + (a^2*Log[Sin[c + d*x]])/d

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \cot (c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx &=\frac {\operatorname {Subst}\left (\int \frac {a^3 (a+x)^2}{x^3} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {a^2 \operatorname {Subst}\left (\int \frac {(a+x)^2}{x^3} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {a^2 \operatorname {Subst}\left (\int \left (\frac {a^2}{x^3}+\frac {2 a}{x^2}+\frac {1}{x}\right ) \, dx,x,a \sin (c+d x)\right )}{d}\\ &=-\frac {2 a^2 \csc (c+d x)}{d}-\frac {a^2 \csc ^2(c+d x)}{2 d}+\frac {a^2 \log (\sin (c+d x))}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 42, normalized size = 0.89 \[ a^2 \left (-\frac {\csc ^2(c+d x)}{2 d}-\frac {2 \csc (c+d x)}{d}+\frac {\log (\sin (c+d x))}{d}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Csc[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

a^2*((-2*Csc[c + d*x])/d - Csc[c + d*x]^2/(2*d) + Log[Sin[c + d*x]]/d)

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 62, normalized size = 1.32 \[ \frac {4 \, a^{2} \sin \left (d x + c\right ) + a^{2} + 2 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right )}{2 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/2*(4*a^2*sin(d*x + c) + a^2 + 2*(a^2*cos(d*x + c)^2 - a^2)*log(1/2*sin(d*x + c)))/(d*cos(d*x + c)^2 - d)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 44, normalized size = 0.94 \[ \frac {2 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) - \frac {4 \, a^{2} \sin \left (d x + c\right ) + a^{2}}{\sin \left (d x + c\right )^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*(2*a^2*log(abs(sin(d*x + c))) - (4*a^2*sin(d*x + c) + a^2)/sin(d*x + c)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.18, size = 48, normalized size = 1.02 \[ -\frac {2 a^{2}}{d \sin \left (d x +c \right )}+\frac {a^{2} \ln \left (\sin \left (d x +c \right )\right )}{d}-\frac {a^{2}}{2 d \sin \left (d x +c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x)

[Out]

-2*a^2/d/sin(d*x+c)+a^2*ln(sin(d*x+c))/d-1/2*a^2/d/sin(d*x+c)^2

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 43, normalized size = 0.91 \[ \frac {2 \, a^{2} \log \left (\sin \left (d x + c\right )\right ) - \frac {4 \, a^{2} \sin \left (d x + c\right ) + a^{2}}{\sin \left (d x + c\right )^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^3*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/2*(2*a^2*log(sin(d*x + c)) - (4*a^2*sin(d*x + c) + a^2)/sin(d*x + c)^2)/d

________________________________________________________________________________________

mupad [B]  time = 8.87, size = 111, normalized size = 2.36 \[ \frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {a^2}{8}+a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d}-\frac {a^2\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(a + a*sin(c + d*x))^2)/sin(c + d*x)^3,x)

[Out]

(a^2*log(tan(c/2 + (d*x)/2)))/d - (a^2*tan(c/2 + (d*x)/2)^2)/(8*d) - (cot(c/2 + (d*x)/2)^2*(a^2/8 + a^2*tan(c/
2 + (d*x)/2)))/d - (a^2*tan(c/2 + (d*x)/2))/d - (a^2*log(tan(c/2 + (d*x)/2)^2 + 1))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{2} \left (\int \cos {\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx + \int 2 \sin {\left (c + d x \right )} \cos {\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)**3*(a+a*sin(d*x+c))**2,x)

[Out]

a**2*(Integral(cos(c + d*x)*csc(c + d*x)**3, x) + Integral(2*sin(c + d*x)*cos(c + d*x)*csc(c + d*x)**3, x) + I
ntegral(sin(c + d*x)**2*cos(c + d*x)*csc(c + d*x)**3, x))

________________________________________________________________________________________